Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Peppermint trees shift their phosphorus-acquisition strategy along a strong gradient of plant-available phosphorus by increasing their transpiration at very low phosphorus availability.

Identifieur interne : 000C50 ( Main/Exploration ); précédent : 000C49; suivant : 000C51

Peppermint trees shift their phosphorus-acquisition strategy along a strong gradient of plant-available phosphorus by increasing their transpiration at very low phosphorus availability.

Auteurs : Gang Huang [République populaire de Chine, Australie] ; Patrick E. Hayes [Australie] ; Megan H. Ryan [Australie] ; Jiayin Pang [Australie] ; Hans Lambers [Australie]

Source :

RBID : pubmed:28924626

Descripteurs français

English descriptors

Abstract

Some plant species use different strategies to acquire phosphorus (P) dependent on environmental conditions, but studies investigating the relative significance of P-acquisition strategies with changing P availability are rare. We combined a natural P availability gradient and a glasshouse study with 10 levels of P supplies to investigate the roles of rhizosphere carboxylates and transpiration-driven mass flow in P acquisition by Agonis flexuosa. Leaf P concentrations of A. flexuosa decreased and leaf manganese (Mn) concentrations increased with decreasing soil P concentration along a dune chronosequence. In the glasshouse, in response to decreasing P supply, shoot growth and root length decreased, leaf P and Mn concentrations decreased, rhizosphere carboxylates decreased, transpiration rate and transpiration ratio increased and the percentage of root length colonized by arbuscular mycorrhizal fungi was unchanged. Although it was proved leaf Mn concentration was a good proxy for rhizosphere carboxylate amounts in the glasshouse study, the enhanced plant P acquisition at low P supply was related to transpiration-induced mass flow rather than carboxylates. We deduced that the higher leaf Mn concentrations in low soil P availability of the field were likely a result of increased mass flow. In summary, as soil P availability declined, A. flexuosa can shift its P-acquisition strategy away from a mycorrhizal mode towards one involving increased mass flow.

DOI: 10.1007/s00442-017-3961-x
PubMed: 28924626


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Peppermint trees shift their phosphorus-acquisition strategy along a strong gradient of plant-available phosphorus by increasing their transpiration at very low phosphorus availability.</title>
<author>
<name sortKey="Huang, Gang" sort="Huang, Gang" uniqKey="Huang G" first="Gang" last="Huang">Gang Huang</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China. hg@ms.xjb.ac.cn.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011</wicri:regionArea>
<wicri:noRegion>830011</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>School of Biological Sciences and Institute of Agriculture, University of Western Australia, Crawley, Perth, WA, 6009, Australia. hg@ms.xjb.ac.cn.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Biological Sciences and Institute of Agriculture, University of Western Australia, Crawley, Perth, WA, 6009</wicri:regionArea>
<wicri:noRegion>6009</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>School of Agriculture and Environment and Institute of Agriculture, University of Western Australia, Crawley, Perth, WA, 6009, Australia. hg@ms.xjb.ac.cn.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Agriculture and Environment and Institute of Agriculture, University of Western Australia, Crawley, Perth, WA, 6009</wicri:regionArea>
<wicri:noRegion>6009</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hayes, Patrick E" sort="Hayes, Patrick E" uniqKey="Hayes P" first="Patrick E" last="Hayes">Patrick E. Hayes</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Biological Sciences and Institute of Agriculture, University of Western Australia, Crawley, Perth, WA, 6009, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Biological Sciences and Institute of Agriculture, University of Western Australia, Crawley, Perth, WA, 6009</wicri:regionArea>
<wicri:noRegion>6009</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ryan, Megan H" sort="Ryan, Megan H" uniqKey="Ryan M" first="Megan H" last="Ryan">Megan H. Ryan</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Agriculture and Environment and Institute of Agriculture, University of Western Australia, Crawley, Perth, WA, 6009, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Agriculture and Environment and Institute of Agriculture, University of Western Australia, Crawley, Perth, WA, 6009</wicri:regionArea>
<wicri:noRegion>6009</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Pang, Jiayin" sort="Pang, Jiayin" uniqKey="Pang J" first="Jiayin" last="Pang">Jiayin Pang</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Agriculture and Environment and Institute of Agriculture, University of Western Australia, Crawley, Perth, WA, 6009, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Agriculture and Environment and Institute of Agriculture, University of Western Australia, Crawley, Perth, WA, 6009</wicri:regionArea>
<wicri:noRegion>6009</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lambers, Hans" sort="Lambers, Hans" uniqKey="Lambers H" first="Hans" last="Lambers">Hans Lambers</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Biological Sciences and Institute of Agriculture, University of Western Australia, Crawley, Perth, WA, 6009, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Biological Sciences and Institute of Agriculture, University of Western Australia, Crawley, Perth, WA, 6009</wicri:regionArea>
<wicri:noRegion>6009</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28924626</idno>
<idno type="pmid">28924626</idno>
<idno type="doi">10.1007/s00442-017-3961-x</idno>
<idno type="wicri:Area/Main/Corpus">000B39</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000B39</idno>
<idno type="wicri:Area/Main/Curation">000B39</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000B39</idno>
<idno type="wicri:Area/Main/Exploration">000B39</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Peppermint trees shift their phosphorus-acquisition strategy along a strong gradient of plant-available phosphorus by increasing their transpiration at very low phosphorus availability.</title>
<author>
<name sortKey="Huang, Gang" sort="Huang, Gang" uniqKey="Huang G" first="Gang" last="Huang">Gang Huang</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China. hg@ms.xjb.ac.cn.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011</wicri:regionArea>
<wicri:noRegion>830011</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>School of Biological Sciences and Institute of Agriculture, University of Western Australia, Crawley, Perth, WA, 6009, Australia. hg@ms.xjb.ac.cn.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Biological Sciences and Institute of Agriculture, University of Western Australia, Crawley, Perth, WA, 6009</wicri:regionArea>
<wicri:noRegion>6009</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>School of Agriculture and Environment and Institute of Agriculture, University of Western Australia, Crawley, Perth, WA, 6009, Australia. hg@ms.xjb.ac.cn.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Agriculture and Environment and Institute of Agriculture, University of Western Australia, Crawley, Perth, WA, 6009</wicri:regionArea>
<wicri:noRegion>6009</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hayes, Patrick E" sort="Hayes, Patrick E" uniqKey="Hayes P" first="Patrick E" last="Hayes">Patrick E. Hayes</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Biological Sciences and Institute of Agriculture, University of Western Australia, Crawley, Perth, WA, 6009, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Biological Sciences and Institute of Agriculture, University of Western Australia, Crawley, Perth, WA, 6009</wicri:regionArea>
<wicri:noRegion>6009</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ryan, Megan H" sort="Ryan, Megan H" uniqKey="Ryan M" first="Megan H" last="Ryan">Megan H. Ryan</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Agriculture and Environment and Institute of Agriculture, University of Western Australia, Crawley, Perth, WA, 6009, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Agriculture and Environment and Institute of Agriculture, University of Western Australia, Crawley, Perth, WA, 6009</wicri:regionArea>
<wicri:noRegion>6009</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Pang, Jiayin" sort="Pang, Jiayin" uniqKey="Pang J" first="Jiayin" last="Pang">Jiayin Pang</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Agriculture and Environment and Institute of Agriculture, University of Western Australia, Crawley, Perth, WA, 6009, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Agriculture and Environment and Institute of Agriculture, University of Western Australia, Crawley, Perth, WA, 6009</wicri:regionArea>
<wicri:noRegion>6009</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lambers, Hans" sort="Lambers, Hans" uniqKey="Lambers H" first="Hans" last="Lambers">Hans Lambers</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Biological Sciences and Institute of Agriculture, University of Western Australia, Crawley, Perth, WA, 6009, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Biological Sciences and Institute of Agriculture, University of Western Australia, Crawley, Perth, WA, 6009</wicri:regionArea>
<wicri:noRegion>6009</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Oecologia</title>
<idno type="eISSN">1432-1939</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Biological Transport (MeSH)</term>
<term>Carboxylic Acids (MeSH)</term>
<term>Mycorrhizae (physiology)</term>
<term>Myrtaceae (physiology)</term>
<term>Phosphorus (chemistry)</term>
<term>Phosphorus (physiology)</term>
<term>Plant Leaves (physiology)</term>
<term>Plant Roots (microbiology)</term>
<term>Plant Transpiration (physiology)</term>
<term>Rhizosphere (MeSH)</term>
<term>Soil (chemistry)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acides carboxyliques (MeSH)</term>
<term>Feuilles de plante (physiologie)</term>
<term>Mycorhizes (physiologie)</term>
<term>Myrtaceae (physiologie)</term>
<term>Phosphore (composition chimique)</term>
<term>Phosphore (physiologie)</term>
<term>Racines de plante (microbiologie)</term>
<term>Rhizosphère (MeSH)</term>
<term>Sol (composition chimique)</term>
<term>Transpiration des plantes (physiologie)</term>
<term>Transport biologique (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Phosphorus</term>
<term>Soil</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="physiology" xml:lang="en">
<term>Phosphorus</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Carboxylic Acids</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Phosphore</term>
<term>Sol</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Racines de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Plant Roots</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Mycorhizes</term>
<term>Myrtaceae</term>
<term>Phosphore</term>
<term>Transpiration des plantes</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Mycorrhizae</term>
<term>Myrtaceae</term>
<term>Plant Leaves</term>
<term>Plant Transpiration</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biological Transport</term>
<term>Rhizosphere</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Acides carboxyliques</term>
<term>Rhizosphère</term>
<term>Transport biologique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Some plant species use different strategies to acquire phosphorus (P) dependent on environmental conditions, but studies investigating the relative significance of P-acquisition strategies with changing P availability are rare. We combined a natural P availability gradient and a glasshouse study with 10 levels of P supplies to investigate the roles of rhizosphere carboxylates and transpiration-driven mass flow in P acquisition by Agonis flexuosa. Leaf P concentrations of A. flexuosa decreased and leaf manganese (Mn) concentrations increased with decreasing soil P concentration along a dune chronosequence. In the glasshouse, in response to decreasing P supply, shoot growth and root length decreased, leaf P and Mn concentrations decreased, rhizosphere carboxylates decreased, transpiration rate and transpiration ratio increased and the percentage of root length colonized by arbuscular mycorrhizal fungi was unchanged. Although it was proved leaf Mn concentration was a good proxy for rhizosphere carboxylate amounts in the glasshouse study, the enhanced plant P acquisition at low P supply was related to transpiration-induced mass flow rather than carboxylates. We deduced that the higher leaf Mn concentrations in low soil P availability of the field were likely a result of increased mass flow. In summary, as soil P availability declined, A. flexuosa can shift its P-acquisition strategy away from a mycorrhizal mode towards one involving increased mass flow.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" IndexingMethod="Curated" Owner="NLM">
<PMID Version="1">28924626</PMID>
<DateCompleted>
<Year>2018</Year>
<Month>09</Month>
<Day>12</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>06</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-1939</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>185</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2017</Year>
<Month>11</Month>
</PubDate>
</JournalIssue>
<Title>Oecologia</Title>
<ISOAbbreviation>Oecologia</ISOAbbreviation>
</Journal>
<ArticleTitle>Peppermint trees shift their phosphorus-acquisition strategy along a strong gradient of plant-available phosphorus by increasing their transpiration at very low phosphorus availability.</ArticleTitle>
<Pagination>
<MedlinePgn>387-400</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00442-017-3961-x</ELocationID>
<Abstract>
<AbstractText>Some plant species use different strategies to acquire phosphorus (P) dependent on environmental conditions, but studies investigating the relative significance of P-acquisition strategies with changing P availability are rare. We combined a natural P availability gradient and a glasshouse study with 10 levels of P supplies to investigate the roles of rhizosphere carboxylates and transpiration-driven mass flow in P acquisition by Agonis flexuosa. Leaf P concentrations of A. flexuosa decreased and leaf manganese (Mn) concentrations increased with decreasing soil P concentration along a dune chronosequence. In the glasshouse, in response to decreasing P supply, shoot growth and root length decreased, leaf P and Mn concentrations decreased, rhizosphere carboxylates decreased, transpiration rate and transpiration ratio increased and the percentage of root length colonized by arbuscular mycorrhizal fungi was unchanged. Although it was proved leaf Mn concentration was a good proxy for rhizosphere carboxylate amounts in the glasshouse study, the enhanced plant P acquisition at low P supply was related to transpiration-induced mass flow rather than carboxylates. We deduced that the higher leaf Mn concentrations in low soil P availability of the field were likely a result of increased mass flow. In summary, as soil P availability declined, A. flexuosa can shift its P-acquisition strategy away from a mycorrhizal mode towards one involving increased mass flow.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Huang</LastName>
<ForeName>Gang</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China. hg@ms.xjb.ac.cn.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>School of Biological Sciences and Institute of Agriculture, University of Western Australia, Crawley, Perth, WA, 6009, Australia. hg@ms.xjb.ac.cn.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>School of Agriculture and Environment and Institute of Agriculture, University of Western Australia, Crawley, Perth, WA, 6009, Australia. hg@ms.xjb.ac.cn.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hayes</LastName>
<ForeName>Patrick E</ForeName>
<Initials>PE</Initials>
<AffiliationInfo>
<Affiliation>School of Biological Sciences and Institute of Agriculture, University of Western Australia, Crawley, Perth, WA, 6009, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ryan</LastName>
<ForeName>Megan H</ForeName>
<Initials>MH</Initials>
<AffiliationInfo>
<Affiliation>School of Agriculture and Environment and Institute of Agriculture, University of Western Australia, Crawley, Perth, WA, 6009, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Pang</LastName>
<ForeName>Jiayin</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>School of Agriculture and Environment and Institute of Agriculture, University of Western Australia, Crawley, Perth, WA, 6009, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lambers</LastName>
<ForeName>Hans</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>School of Biological Sciences and Institute of Agriculture, University of Western Australia, Crawley, Perth, WA, 6009, Australia.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>09</Month>
<Day>18</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Oecologia</MedlineTA>
<NlmUniqueID>0150372</NlmUniqueID>
<ISSNLinking>0029-8549</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D002264">Carboxylic Acids</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012987">Soil</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>27YLU75U4W</RegistryNumber>
<NameOfSubstance UI="D010758">Phosphorus</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001692" MajorTopicYN="N">Biological Transport</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002264" MajorTopicYN="N">Carboxylic Acids</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D027822" MajorTopicYN="N">Myrtaceae</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010758" MajorTopicYN="N">Phosphorus</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018526" MajorTopicYN="N">Plant Transpiration</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058441" MajorTopicYN="N">Rhizosphere</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012987" MajorTopicYN="N">Soil</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Agonis flexuosa</Keyword>
<Keyword MajorTopicYN="Y">Arbuscular mycorrhizal fungi</Keyword>
<Keyword MajorTopicYN="Y">Leaf manganese concentration</Keyword>
<Keyword MajorTopicYN="Y">Leaf phosphorus concentration</Keyword>
<Keyword MajorTopicYN="Y">Mass flow</Keyword>
<Keyword MajorTopicYN="Y">Phosphorus supply</Keyword>
<Keyword MajorTopicYN="Y">Transpiration</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>11</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>09</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>9</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>9</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>9</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28924626</ArticleId>
<ArticleId IdType="doi">10.1007/s00442-017-3961-x</ArticleId>
<ArticleId IdType="pii">10.1007/s00442-017-3961-x</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Appl Environ Microbiol. 1998 Dec;64(12):5004-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9835596</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2007;58(13):3549-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18057036</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2015 Oct;24(19):4912-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26332084</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2007;173(1):181-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17176404</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Total Environ. 2016 Jan 15;542(Pt B):1040-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26520615</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2015 Feb;20(2):83-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25466977</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2014 Apr;37(4):911-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24112081</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2008;179(4):1048-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18537891</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2011 Aug;31(8):878-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21856654</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Sep;133(1):16-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12970469</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2006 Oct;98(4):693-713</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16769731</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2014 Sep 26;345(6204):1602-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25258078</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 1972;10:429-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18479192</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chromatogr A. 2003 Sep 5;1011(1-2):233-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14518781</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2009 Aug;161(1):15-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19449035</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2014 Jan;65(1):159-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24231035</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2015 Aug;154(4):511-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25291346</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2013 May;111(5):801-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23456689</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2012 Dec;35(12):2170-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22632405</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2000 Feb 24;403(6772):853-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10706275</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Australie</li>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Huang, Gang" sort="Huang, Gang" uniqKey="Huang G" first="Gang" last="Huang">Gang Huang</name>
</noRegion>
</country>
<country name="Australie">
<noRegion>
<name sortKey="Huang, Gang" sort="Huang, Gang" uniqKey="Huang G" first="Gang" last="Huang">Gang Huang</name>
</noRegion>
<name sortKey="Hayes, Patrick E" sort="Hayes, Patrick E" uniqKey="Hayes P" first="Patrick E" last="Hayes">Patrick E. Hayes</name>
<name sortKey="Huang, Gang" sort="Huang, Gang" uniqKey="Huang G" first="Gang" last="Huang">Gang Huang</name>
<name sortKey="Lambers, Hans" sort="Lambers, Hans" uniqKey="Lambers H" first="Hans" last="Lambers">Hans Lambers</name>
<name sortKey="Pang, Jiayin" sort="Pang, Jiayin" uniqKey="Pang J" first="Jiayin" last="Pang">Jiayin Pang</name>
<name sortKey="Ryan, Megan H" sort="Ryan, Megan H" uniqKey="Ryan M" first="Megan H" last="Ryan">Megan H. Ryan</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000C50 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000C50 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:28924626
   |texte=   Peppermint trees shift their phosphorus-acquisition strategy along a strong gradient of plant-available phosphorus by increasing their transpiration at very low phosphorus availability.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:28924626" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020